

Jim Storey, Mike Choate USGS/SGT

October 29, 2013

Overview

Geometric Performance

- ➤ Instrument fields of view and co-alignment
- Band registration accuracy
- Geodetic accuracy (without ground control)
- ➤ Geometric accuracy (fit to GLS control)
- ➤ OLI spatial performance
- ➤On-orbit jitter assessment
- Geometric performance summary
- On-orbit Calibration Updates
- GLS Ground Control Accuracy
 - Identification and repair of problem areas
- Ongoing Work

TIRS-OLI Co-Alignment and Swath

- Coincident OLI and TIRS imagery demonstrates that the TIRS field of view is completely contained within the OLI field of view
 - ➤ The TIRS FOV is more closely aligned (~700 meters) with the western (starboard side) edge of the OLI FOV
 - ➤ The OLI FOV extends ~3.3 km beyond the TIRS FOV on the eastern edge
- Swath width measured at row 060 (equator):
 - ➤OLI: 190.2 km vs. 185 km requirement
 - >TIRS: 186.2 km vs. 185 km requirement
- As a consequence of yaw steering, the L8 scenes are more rectangular (less Earth rotation skew) than heritage Landsat scenes

Full Scene Coverage for 037/037

◆ Red = Band 10 (TIRS) : Green = Band 7 (OLI) : Blue = Band 1 (OLI)

West Edge of Scene

East Edge of Scene

October 29-31, 2013

Landsat Science Team Meeting

OLI Band Registration Accuracy

- Band registration accuracy was evaluated using cloud-free scenes of selected test sites
 - Mainly desert sites are used
 - ➤ Data acquired between April 15, 2013 and October 18, 2013 (operational WRS-2 orbit)
- Results from 293 OLI registration test scenes:
 - ▶12 high-altitude Earth scenes were used for cirrus band registration assessment
 - OLI band registration accuracy (worst band pair)
 - ❖Line Direction: 3.97 meters LE90 (with cirrus)
 - ❖Sample Direction: 4.07 meters LE90 (with cirrus)
 - ❖Line Direction: 3.28 meters LE90 (no cirrus)
 - ❖Sample Direction: 3.37 meters LE90 (no cirrus)
 - ❖Specification: 4.50 meters LE90

TIRS Band Registration Accuracy

TIRS 10.8 μm to 12.0 μm band registration

- ➤ Results from 139 TIRS band registration test scenes acquired from April 15, 2013 to October 22, 2013
- >TIRS band registration accuracy

❖Line Direction: 10.5 meters LE90

❖Sample Direction: 8.7 meters LE90

❖Specification: 18.0 meters LE90

TIRS to OLI band registration

- ➤ Results from 116 TIRS-to-OLI registration test scenes acquired from April 15, 2013 to October 15, 2013
- >TIRS-to-OLI band registration accuracy (worst band pair)

❖Line Direction: 20.8 meters LE90

❖Sample Direction: 18.8 meters LE90

❖Specification: 30.0 meters LE90

TIRS-to-OLI Registration vs. Date

 Only one scene tested was above the 30 m requirement threshold

Geodetic Accuracy

- Geodetic accuracy is evaluated by measuring the offsets between OLI L1G (systematic) images and ground control points (GCPs)
 - ➤ Geometric supersites (DOQ/GPS control) and Global Land Survey anchor sites (NGA control) were used for geodetic accuracy characterization
- OLI Geodetic Accuracy based upon 4718 characterization scenes acquired from WRS orbit and after OLI-to-ACS alignment cal

➤ Absolute Accuracy: 37.0 meters CE90

➤ Specification: 65.0 meters CE90

Relative Accuracy: 20.1 meters CE90

➤ Specification: 25.0 meters CE90

Geodetic Accuracy Test Scenes

• 32 scenes (of 4718) from 7 sites are off by more than the 65 m CE90 specification:

Geometric Accuracy

- Geometric (Level 1T product) accuracy is evaluated by measuring the accuracy of L1T products using independent validation GCPs
 - Sites with sufficient GCPs have a subset withheld from the precision correction process to serve as independent validation points
 - Only NGA anchor sites are used for geometric accuracy characterization
- OLI Geometric Accuracy based upon 6231 test site scenes:

►L1T Accuracy: 11.4 meters CE90

➤ Specification: 12.0 meters CE90

OLI Spatial Performance

- Bridge targets are used to characterize the OLI system transfer function on-orbit
 - Level 1R image samples are interleaved to construct oversampled bridge profiles
 - Transfer function parameters are varied to make the modeled bridge profile best fit the image profile
 - Best fit model is used to generate spatial parameters
- Analysis of 101 bridge targets in 47 scenes indicates that OLI is meeting spatial edge slope and half edge extent requirements
 - ➤ All bands well above minimum edge slope requirement
 - Some bands are close to the upper limit set by the aliasing requirement
 - ❖Both limits are shown on the following plot

OLI Edge Slope By Band

Bahrain and China Bridge Targets

On-Orbit Jitter Assessment

No evidence of on-orbit jitter was found

- Analysis of the ancillary attitude data showed that the 8 Hz solar array drive frequency is visible in the data, but no higher frequency disturbances were observed
- ➤TIRS scene select mirror encoder telemetry shows no significant disturbances
- Dense tie point correlation to reference imagery showed no evidence of excessive time-correlated image disturbance
- ➤OLI band-to-band registration accuracy performance is within specifications, suggesting no substantial degradation due to jitter
- OLI image quality is excellent and spatial performance is good

L8 Performance Summary

Landsat 8 on-orbit geometric performance is excellent and meets all requirements

Requirement	Measured Value	Required Value	Units	Margin
OLI Swath	190.2	>185	kilometers	2.8%
OLI MS Ground Sample Distance	29.934	<30	meters	0.2%
OLI Pan Ground Sample Distance	14.932	<15	meters	0.5%
OLI Band Registration Accuracy (all bands)	4.07	<4.5	meters (LE90)	9.6%
OLI Band Registration Accuracy (no cirrus)	3.37	<4.5	meters (LE90)	25.1%
Absolute Geodetic Accuracy	37.0	<65	meters (CE90)	43.1%
Relative Geodetic Accuracy	20.1	<25	meters (CE90)	19.6%
Geometric (L1T) Accuracy	11.4	<12	meters (CE90)	5.0%
OLI Edge Slope	0.03054	>0.027	1/meters	13.1%
TIRS Swath	186.2	>185	kilometers	0.6%
TIRS Ground Sample Distance	103.424	<120	meters	13.8%
TIRS Band Registration Accuracy	10.5	<18	meters (LE90)	41.7%
TIRS-to-OLI Registration Accuracy	20.8	<30	meters (LE90)	30.7%

On-Orbit Calibration Updates

- The initial on-orbit geometric calibration was performed during the commissioning period
 - Measured OLI to spacecraft alignment
 - ➤ Measured OLI SCA-to-SCA alignment
 - ➤ Measured OLI band-to-band alignment
 - ➤ Measured TIRS-to-OLI alignment
 - ➤ Measured TIRS SCA-to-SCA alignment
 - ➤ Measured TIRS band-to-band alignment
- Updated OLI-to-spacecraft alignment on July 1
 - ➤ Small (10 microradian) adjustment (geodetic accuracy)
- Spacecraft safe-hold event in September led to TIRS-to-OLI alignment change
 - ➤ Calibration update issued effective 21SEP2013
 - Recent data suggest alignment may be drifting back

Ground Control Accuracy Improvement

- The global control point library used in Landsat L1T processing was derived from the GLS data set
 - Ensures that new products are consistent with the existing archive (and each other)
- L8 geodetic accuracy results indicate that, in some areas, the GLS control base is less accurate (in an absolute sense) than the OLI data right off the spacecraft
 - This is manifested as repeatable large (tens of meters) offsets for particular WRS path/row locations
 - ➤ In these cases, L1GT (no control) products are closer to truth than L1T
- The control library image chips are all L7 ETM+ (8-bit) and are getting older all the time
 - ➤ We want to extract new OLI chips for the GCPs anyway
 - Would be a good time to repair areas that are geometrically problematic
- The GLS was originally established by triangulating blocks of ETM+ imagery containing sparse control provided by NGA
 - Scenes containing NGA control are referred to as "anchor" sites
 - Some areas (e.g., NE Asia, islands) had little or no NGA control
 - > L7 L1GT scenes from "quiet gyro" period were used to control these areas

17

NGA Anchor Site Distribution

Note the gap north of 60N and east of 90E

Three Types of Control Problems Identified

1. Scenes where bad control was extracted

- ➤ Three cases where the GCPs from a single WRS scene are inconsistent with the neighboring WRS scenes.
- ➤ This ground control can be replaced using the existing GLS data making them consistent with their neighbors.

2. Areas where the GLS framework is inaccurate

- In a few areas, the GLS control has systematic biases of more than 100 meters.
- ➤ CPF precision correction parameters/constraints can prevent these from being registered to L1T.
- ➤ Have identified 15 areas with consistent offsets above 75 m, though there are others (mostly islands and NE Asia where there was no NGA control) with smaller offsets.

3. Scenes with problematic feature content.

Some scenes with large offsets, such as 184/048, are problematic due to long term changes in the landscape (e.g., migration of dune patterns) rather than to bias errors in the circa 2000 GCPs.

Distribution of Measured Control Bias

Current Status

- Routinely generated L8 geodetic accuracy data are identifying regions where global GCP library contains biases
 - New control has been generated for problem areas where the errors are isolated to a single scene (3 instances)
 - ➤ There are another 15 areas that have large (>75 meter) offsets due to lack of NGA control in the region (10 of these are islands)
- Satellite block triangulation techniques show promise as a method for improving control accuracy in weak areas
 - Balearic Islands test block successfully processed
 - Worldview data used to verify triangulation results
- A plan and schedule for fixing and replacing the control in problematic areas is being developed
 - New control point positions will be derived and inserted into the GCP library in WRS path/row units (i.e., entire scenes) with all control in a given area being replaced at the same time
 - Data acquired in these areas will be reprocessed and users will be notified
 - The control updates will also be propagated back to the heritage Landsat control database
 - ➤ New OLI GCP image chips will be extracted for the entire library

Ongoing Work

- Continue to routinely monitor Landsat 8
 OLI/TIRS geometric performance
 - Currently watching TIRS-to-OLI alignment as it stabilizes following the safe hold event
- Developing augmented L1T product that will allow users to calculate per pixel solar illumination and sensor viewing angles
 - More about this tomorrow
- Developing plan for improving the accuracy of the Landsat ground control point database
 - ➤ Will start with 15 high priority areas
 - Many problem areas are islands (that did not have NGA control) which are relatively easy to repair and replace without disrupting surrounding data